Đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 – 2015 sở GD&ĐT Hà Tĩnh

Đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 – 2015 sở GD&ĐT Hà Tĩnh

TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi cấp tỉnh Toán 10 năm học 2014 – 2015 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Bạn đang đọc: Đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 – 2015 sở GD&ĐT Hà Tĩnh

Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 – 2015 sở GD&ĐT Hà Tĩnh:
+ Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC. Gọi H K, lần lượt là chân đường cao hạ từ các đỉnh B C, của tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết 1 3 5 1 5 5 H K phương trình đường thẳng BC là x 3 40 y và điểm B có hoành độ âm.
+ a) Cho tam giác ABC có trọng tâm G. Chứng minh rằng nếu AC là tiếp tuyến của đường tròn ngoại tiếp tam giác GAB thì 22 2 cos cos 2cos A C B. b) Cho các số thực dương a bc thỏa mãn abbcca 8. Tìm giá trị nhỏ nhất của biểu thức 3 1111 P abc a bb cc a 222.
+ Kí hiệu E là tập hợp gồm tất cả các tam thức bậc hai f x ax bx c có a 0 2 b ac 4 0. Tìm điều kiện cần và đủ đối với các số mn p để với mọi f x thuộc E ta đều có g x f x m ax b n bx c p cx a cũng thuộc E.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *