Đề thi chọn HSG Toán 11 năm 2019 – 2020 trường chuyên Lê Quý Đôn – BR VT

Thứ Bảy ngày 13 tháng 06 năm 2020, trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2019 – 2020.

Bạn đang đọc: Đề thi chọn HSG Toán 11 năm 2019 – 2020 trường chuyên Lê Quý Đôn – BR VT

Đề thi chọn HSG Toán 11 năm 2019 – 2020 trường THPT chuyên Lê Quý Đôn – BR VT gồm 01 trang với 05 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 180 phút.

Trích dẫn đề thi chọn HSG Toán 11 năm 2019 – 2020 trường chuyên Lê Quý Đôn – BR VT:
+ Cho tam giác ABC đều, tâm H và có độ dài cạnh là a. Đường thẳng d vuông góc với mặt phẳng (ABC) tại điểm A. Điểm M thay đổi trên đường thẳng d, AM = x (x > 0). Gọi K là trực tâm tam giác MBC. Chứng minh đường thẳng HK vuông góc với mặt phẳng (MBC) và tìm x để khoảng cách từ điểm K đến mặt phẳng (ABC) đạt giá trị lớn nhất.

+ Xét hình chóp S.ABC thay đổi sao cho các cạnh SA, SB, SC đôi một vuông góc với nhau. Gọi M, N, P là trung điểm các cạnh BC, CA, AB. Kí hiệu α, β, γ lần lượt là góc tạo bởi mặt phẳng (ABC) với các mặt phẳng (SMN), (SNP), (SPM). Tìm giá trị lớn nhất của biểu thức T = sinα + sinβ + sinγ.
+ Có một số kiện hàng đã được đóng gói với tổng khối lượng là 3 tấn. Mỗi kiện hàng có khối lượng không quá 500 kilôgam. Chứng minh rằng người ta có thể sử dụng 4 chiếc xe tải, mỗi xe chở không quá 1 tấn để chở tất cả các kiện hàng nói trên.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *