Đề thi HSG Toán 12 cấp trường năm 2021 – 2022 trường chuyên Nguyễn Trãi – Hải Dương có lời giải chi tiết.
Bạn đang đọc: Đề thi HSG Toán 12 cấp trường năm 2021 – 2022 trường chuyên Nguyễn Trãi – Hải Dương
Trích dẫn đề thi HSG Toán 12 cấp trường năm 2021 – 2022 trường chuyên Nguyễn Trãi – Hải Dương:
+ Cho tam giác nhọn ABC với AB BC. Cho I là tâm nội tiếp của tam giác ABC và là đường tròn ngoại tiếp tam giác ABC. Đường tròn nội tiếp tam giác ABC tiếp xúc với BC tại K. Đường thẳng AK cắt tại điểm thứ hai T. Cho M là trung điểm của BC và N là điểm chính giữa cung BC chứa A của. Đoạn thẳng NT cắt đường tròn ngoại tiếp tam giác BIC ở P. Chứng minh rằng a) Cho KI cắt BIC tại điểm thứ hai X thì N T X thẳng hàng. b) PM // AK.
+ Cho dãy số x a x n n n a là nghiệm dương của phương trình 2 x kx với số nguyên dương k cho trước. Khi đó chứng minh rằng 1 1 1 (mod ) n n.
+ Có bao nhiêu cách lát kín bảng 2 2022 bởi các viên domino 1 2 và 2 1?