Đề khảo sát Toán 9 năm 2023 – 2024 phòng GD&ĐT Quỳnh Lưu – Nghệ An

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử và khảo sát chất lượng học sinh môn Toán 9 giai đoạn học kỳ 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm.

Bạn đang đọc: Đề khảo sát Toán 9 năm 2023 – 2024 phòng GD&ĐT Quỳnh Lưu – Nghệ An

Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 phòng GD&ĐT Quỳnh Lưu – Nghệ An:
+ Một quyển sách Toán có giá bìa 30000 đồng, đang được giảm giá 5%. Một quyển sách Văn có giá bìa 40000 đồng, đang được giảm giá 10%. Trong thời gian giảm giá, nhà sách đó bán được tất cả 120 quyển sách Văn và Toán, thu được về số tiền là 3795000 đồng. Hỏi nhà sách đó đã bán được bao nhiêu quyển sách Văn, bao nhiêu quyển sách Toán?
+ Hải đăng Đá Lát là một trong 7 ngọn hải đăng cao nhất Việt Nam, được đặt trên đảo Đá Lát ở vị trí cực Tây Quần đảo, thuộc xã đảo Trường Sa, huyện Trường Sa, tỉnh Khánh Hòa. Ngọn hải đăng được xây dựng năm 1994, cao 42 mét, có tác dụng chỉ vị trí đảo, giúp tàu thuyền hoạt động trong vùng biển Trường Sa định hướng và xác định được vị trí mình. Một người đi trên tàu đánh cá muốn đến ngọn hải đăng Đá Lát, người đó đứng trên mũi tàu cá và dùng giác kế đo được góc giữa mũi tàu và tia nắng chiếu từ đỉnh ngọn hải đăng đến tàu là 10° (hình vẽ dưới đây). Tính khoảng cách AB từ tàu đến ngọn hải đăng (làm tròn đến chữ số thập phân thứ nhất).
+ Cho tam giác ABC ngoại tiếp đường tròn (O). Gọi D, E, F lần lượt là tiếp điểm giữa các cạnh BC, AB, AC với đường tròn (O). Kẻ DH vuông góc EF tại H. a) Chứng minh rằng: tứ giác AEOF nội tiếp đường tròn. b) Tia BH cắt đường tròn tại M và N sao cho M nằm giữa B và H, H nằm giữa M và N. Chứng minh: BE2 = BM.BN. c) Chứng minh rằng.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *