THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi môn Toán 9 vòng 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An.
Bạn đang đọc: Đề chọn HSG Toán 9 vòng 3 năm 2023 – 2024 phòng GD&ĐT Hoàng Mai – Nghệ An
Trích dẫn Đề chọn HSG Toán 9 vòng 3 năm 2023 – 2024 phòng GD&ĐT Hoàng Mai – Nghệ An:
+ Cho đường tròn (O;R) và điểm A cố đỉnh với OA = 2R; đường kính BC quay quanh O sao cho tam giác ABC là tam giác nhọn. Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng OA tại điểm thứ hai là I. Các đường thẳng AB, AC cắt (O;R) lần lượt tại điểm thứ hai là D và E. Gọi K là giao điểm của DE với OA. a) Chứng minh AK.AI = AE.AC. b) Tính độ dài đoạn AK theo R. c) Chứng minh tâm đường tròn ngoại tiếp tam giác ADE luôn thuộc một đường thẳng cố định.
+ Cho 8 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 210. Chứng minh rằng trong đoạn thẳng đó luôn tìm được 3 đoạn thẳng để ghép thành một tam giác.