Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết.

Bạn đang đọc: Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ

Trích dẫn Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ:
+ Cho tam giác đều ABC nội tiếp đường tròn (O), gọi H là trung điểm của cạnh BC, M là điểm bất kỳ thuộc đoạn BH (M khác B). Lấy điểm N thuộc đoạn thẳng CA sao cho CN BM. Gọi I là trung điểm của MN. a) Chứng minh rằng bốn điểm OM H I cùng thuộc một đường tròn. b) Gọi P là giao điểm của OI và AB. Chứng minh rằng tam giác MNP đều. c) Xác định vị trí điểm M để tam giác IAB có chu vi nhỏ nhất.
+ Một chiếc đu quay có bán kính 75m, tâm của vòng quay ở độ cao 90m, thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét?
+ Cho P x là một đa thức bậc n với hệ số nguyên, n ≥ 2. Biết P P 1 2 2023. Chứng minh rằng phương trình P x 0 không có nghiệm nguyên.

File WORD (dành cho quý thầy, cô): TẢI XUỐNG

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *