THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Tri Phương, quận Ba Đình, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới.
Bạn đang đọc: Đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Tri Phương – Hà Nội
Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Tri Phương – Hà Nội:
+ Cho hình chữ nhật ABCD. Gọi O là giao điểm của AC và BD. Vẽ I là trung điểm của BC, E là điểm đối xứng với O qua I. 1) Chứng minh tứ giác BOCE là hình thoi. 2) Gọi K là giao điểm của tia CE và tia AB. Chứng minh tứ giác BDCK là hình bình hành và ba điểm D, K, I thẳng hàng. 3) DK cắt AC và BE lần lượt tại M và N: a) Chứng minh M là trung điểm của DN b) Chứng minh DM MN NK. 4) Tìm điều kiện của hình chữ nhật ABCD để tứ giác BOCE là hình vuông.
+ Cho biểu thức 5 3 x A x và 2 2 2 3 9 3 9 x x x B x x với x 3. 1) Tính giá trị của biểu thức A khi x 2. 2) Rút gọn biểu thức B. 3) Cho P B A. Tìm giá trị nguyên dương của x để P có giá trị nguyên.
+ Cho x; y; z đôi một khác nhau thỏa mãn: 2 2 2 2020 x y z x y y z z x. Tính giá trị biểu thức: 2 2 2 2014.