Đề thi giữa học kỳ 2 Toán 9 năm 2017 – 2018 phòng GD&ĐT Bắc Từ Liêm – Hà Nội

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi kiểm tra chất lượng giữa học kỳ 2 môn Toán 9 năm học 2017 – 2018 phòng Giáo dục và Đào tạo quận Bắc Từ Liêm, thành phố Hà Nội.

Bạn đang đọc: Đề thi giữa học kỳ 2 Toán 9 năm 2017 – 2018 phòng GD&ĐT Bắc Từ Liêm – Hà Nội

Trích dẫn đề thi giữa học kỳ 2 Toán 9 năm 2017 – 2018 phòng GD&ĐT Bắc Từ Liêm – Hà Nội:
+ Hai vòi nước cùng chảy vào một bể không có nước thì sau 12 giờ sẽ đầy bể. Nếu mở vòi I chảy trong 4 giờ rồi khóa lại và mở tiếp vòi II chảy trong 3 giờ thì được 3 10 bể. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể?
+ Cho nửa đường tròn (O), đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP // KM. Gọi Q là giao điểm của các đường thẳng AP và BM; E là giao điểm của PB và AM. 1) Chứng minh rằng: Tứ giác PQME nội tiếp đường tròn 2) Chứng minh: ∆AKN = ∆BKM 3) Chứng minh: AM.BE = AN.AQ 4) Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp tam giác OMP. Chứng minh rằng khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường cố định.
+ Cho hàm số y = – x2 có đồ thị là parabol (P) và hàm số y = x – 2 có đồ thị là đường thẳng (d). Gọi A và B là giao điểm của (d) với (P). Tính diện tích tam giác OAB.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *