THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm.
Bạn đang đọc: Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Hà Nam
Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Hà Nam:
+ Cho parabol 1 2 2 Py x và hai điểm A B 2 2 4 8 nằm trên (P). Gọi M là điểm thay đổi trên (P) và có hoành độ là m m 2 4. Tìm m để tam giác ABM có diện tích lớn nhất.
+ Cho đường tròn (O;R) đường kính AB. Gọi C là điểm thỏa mãn tam giác ABC nhọn. Các đường thẳng CA CB cắt đường tròn (O) tại điểm thứ hai tương ứng là D E. Trên cung AB của (O) không chứa D lấy điểm F (0 FA FB). Đường thẳng CF cắt AB tại M cắt đường tròn O tại N (N không trùng với F) và cắt đường tròn (O’) ngoại tiếp tam giác CDE tại P (P không trùng với C). a) Giả sử 0 ACB 60 tính DE theo R. b) Chứng minh CN CF CP CM. c) Gọi I H theo thứ tự là hình chiếu vuông góc của F trên các đường thẳng BD AB. Các đường thẳng IH và CD cắt nhau tại K. Tìm vị trí của điểm F để biểu thức AB BD AD FH FI FK đạt giá trị nhỏ nhất.
+ Cho góc nhọn xOy cố định và A là điểm cố định trên Ox. Đường tròn (I) thay đổi nhưng luôn tiếp xúc với Ox Oy lần lượt tại E D. Gọi AF là tiếp tuyến thứ hai kẻ từ A đến (I) (F là tiếp điểm). Chứng minh DF luôn đi qua một điểm cố định.
File WORD (dành cho quý thầy, cô): TẢI XUỐNG