THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Nam Định.
Bạn đang đọc: Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Nam Định
Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Nam Định:
+ Cho đường tròn (O), đường kính BC. Lấy điểm A trên tiếp tuyến tại B của đường tròn đó. Vẽ dây CE của đường tròn (O) song song với OA, BE cắt OA tại H. a) Chứng minh AE là tiếp tuyến của đường tròn (O). b) Tia AO cắt đường tròn (O) tại hai điểm F; K (F nằm giữa O và A). Chứng minh: i) FCO = FCE. ii) AK.CH = KH.CA.
+ Đường thẳng (d) chia ABC thành hai phần có chu vi và diện tích bằng nhau. Chứng tỏ (d) đi qua tâm đường tròn nội tiếp ABC.
+ Có 6 chiếc hộp, người ta bỏ vào mỗi hộp một số hạt đậu bất kỳ lần lượt là k1; k2; k3; k4; k5; k6 sao cho k13 + k23 + k33 + k34 + k53 + k63 = 2024. Sau đó thực hiện thuật toán: Mỗi lần thực hiện chọn ngẫu nhiên ba hộp bất kỳ rồi bỏ vào mỗi hộp 1 hạt đậu. Hỏi sau một số lần thực hiện thì số hạt đậu trong 6 hộp có bằng nhau không?