Đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Khánh Hòa

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kì thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 06 năm 2022.

Bạn đang đọc: Đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Khánh Hòa

Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Khánh Hòa:
+ Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – m + 3 (m là tham số) và parapol (P): y = x2. a) Vẽ đồ thị (P). b) Tìm các số nguyên m để (d) và (P) cắt nhau tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn: x12(x2 + 2) + x22(x1 + 2) =
+ Nhằm đáp ứng nhu cầu sử dụng khẩu trang chống dịch COVID-19, theo kế hoạch, hai tổ sản xuất của một nhà máy dự định làm 720000 khẩu trang. Do áp dụng kĩ thuật mới nên tổ I đã sản xuất vượt kế hoạch 15% và tổ II vượt kế hoạch 12%, vì vậy họ đã làm được 819000 khẩu trang. Hỏi theo kế hoạch số khẩu trang của mỗi tổ sản xuất là bao nhiêu?
+ Cho nửa đường tròn tâm O bán kính 3cm có đường kính AB. Gọi C là điểm thuộc nửa đường tròn sao cho AC > BC. Vẽ OD vuông góc với AC (D thuộc AC) và CE vuông góc với AB (E thuộc AB). Tiếp tuyến tại B của nửa đường tròn cắt tia AC tại F. a) Chứng minh: ODCE là tứ giác nội tiếp. b) Chứng minh: OCD = CBF. c) Cho BAC = 30°. Tính diện tích phần tam giác ABF nằm bên ngoài đường tròn (O;3cm). d) Khi C di động trên nửa đường tròn (O;3cm). Tìm vị trí điểm C sao cho chu vi tam giác OCE lớn nhất.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *