Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội; đề thi có đáp án và lời giải chi tiết.

Bạn đang đọc: Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội

Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội:
+ Cho A B là hai điểm cố định nằm trên đường tròn tâm O, bán kính R. Giả sử C là điểm cố định trên tia đối của tia BA. Một cát tuyến thay đổi qua C cắt đường tròn (O) tại D và E (D nằm giữa C E). Các đường tròn ngoại tiếp các tam giác BCD và ACE cắt nhau tại giao điểm thứ hai M. Biết rằng bốn điểm OBME tạo thành tứ giác OBME. Chứng minh rằng:
a) Tứ giác OBME nội tiếp.
b) 2 2 CD CE CO R.
c) M luôn di chuyển trên một đường tròn cố định.
+ Tìm tất cả các số nguyên dương N sao cho N có thể biểu diễn một cách duy nhất ở dạng 2 1 1 x y xy với x y là hai số nguyên dương.
+ Cho a, b, c là ba số nguyên dương sao cho mỗi số trong ba số đó đều biểu diễn được dưới dạng lũy thừa của 2 với số mũ tự nhiên. Biết rằng phương trình bậc hai 2 ax bx c 0 (1) có cả hai nghiệm đều là số nguyên. Chứng minh rằng hai nghiệm của phương trình (1) bằng nhau.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *