THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 THPT chuyên năm học 2019 – 2020 sở Giáo dục và Đào tạo Hà Nam (Đề chung – Vòng 1), đề thi được dành cho toàn bộ các thí sinh tham dự kỳ thi, đề gồm 5 bài toán tự luận, thời gian làm bài 120 phút.
Bạn đang đọc: Đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Hà Nam (Đề chung)
Trích dẫn đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Hà Nam (Đề chung):
+ Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x^2 và đường thẳng (d) có phương trình y = mx + 3 (với m là tham số).
1. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B.
2. Gọi x1, x2 lần lượt là hoành độ của A và B. Tính tích các giá trị của m để 2×1 + x2 = 1.
+ Cho đường tròn (O;R) và điểm A sao cho OA = 3R. Qua A kẻ hai tiếp tuyến AB và AC của đường tròn (O), với B và C là hai tiếp điểm. Kẻ cát tuyến AMN của đường tròn (O) (M nằm giữa hai điểm A và N). Gọi H là giao điểm của OA và BC.
1. Chứng minh tứ giác ABOC nội tiếp.
2. Chứng minh AM.AN = AH.AO.
3. Chứng minh HB là đường phân giác của góc MHN.
4. Gọi I, K lần lượt là hình chiếu của M trên AB và AC. Tìm giá trị lớn nhất của MI.MK khi cát tuyến AMN quay quanh A.