Các bài toán chứng minh ba điểm thẳng hàng – ba đường thẳng đồng quy

Tài liệu gồm 80 trang, được biên soạn bởi thầy giáo Nguyễn Công Lợi, hướng dẫn phương pháp và tuyển chọn các bài toán chứng minh ba điểm thẳng hàng – ba đường thẳng đồng quy, đây là dạng toán thường gặp trong các đề tuyển sinh vào lớp 10 môn Toán.

Bạn đang đọc: Các bài toán chứng minh ba điểm thẳng hàng – ba đường thẳng đồng quy

A. CÁC BÀI TOÁN VỀ BA ĐIỂM THẲNG HÀNG
I. Một số phương pháp chứng minh ba điểm thẳng hàng
+ Phương pháp 1: Sử dụng góc bù nhau: Nếu có 0 ABx xBC 180 thì 3 điểm A, B, C thẳng hàng theo thứ tự đó.
+ Phương pháp 2: Sử dụng tiên đề về đường thẳng song song: Tiên đề Ơclít: Qua một điểm ở ngoài một đường thẳng chỉ kẻ được duy nhất một đường thẳng song song với đường thẳng đã cho. Do đó, nếu qua điểm A ta kẻ được AB và AC cùng song song với một đường thẳng d nào đó thì A, B, C thẳng hàng. Để chứng minh ba điểm A, B, C thẳng hàng ta chứng minh AB và AC cùng song song với một đường thẳng d.
+ Phương pháp 3: Sử dụng tiên đề về đường thẳng vuông góc: Để chứng minh ba điểm A, B, C thẳng hàng ta đi chứng minh AB và AC cùng vuông góc với một đường thẳng d.
+ Phương pháp 4: Sử dụng 2 tia trùng nhau hoặc đối nhau: Nếu hai tia MA, MB trùng nhau hoặc đối nhau thì 3 điểm M, A, B thẳng hàng.
+ Phương pháp 5: Thêm điểm: Để chứng minh 3 điểm A, B, C thẳng hàng có thể xác định thêm điểm D khác A, B, C sau đó chứng minh hai trong ba bộ ba điểm A, B, D; A, C, D; B, C, D thẳng hàng.
+ Phương pháp 6: Phương pháp sử dụng hình duy nhất: Để chứng minh ba điểm A, B, C thẳng hàng với C thuộc hình H nào đó. Ta gọi C’ là giao điểm của AB với hình H và tìm cách chứng minh hai điểm C và C’ trùng nhau.
+ Phương pháp 7: Sử dụng định lý Menelaus: Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt nằm trên các đường thẳng BC, CA, AB sao cho trong chúng hoặc không có điểm nào, hoặc có đúng 2 điểm thuộc các cạnh của tam giác ABC. Khi đó A’, B’, C’ thẳng hàng khi và chỉ khi.
II. Một số ví dụ minh họa

B. CÁC BÀI TOÁN VỀ BA ĐƯỜNG ĐỒNG QUY
I. Một số phương pháp chứng minh ba đường đồng quy
+ Phương pháp 1: Chuyển bài toán chứng minh ba đường thẳng đồng quy về bài toán chứng minh ba điểm thẳng hàng.
+ Phương pháp 2: Chứng minh ba đường thẳng là đường trung tuyến, ba đường phân giác, ba đường cao, ba đường trung trực trong tam giác.
+ Phương pháp 3: Gọi giao điểm của hai đường thẳng là M và chứng minh đường thẳng còn lại cũng đi qua điểm M.
+ Phương pháp 4: Sử dụng định lí Ceva: Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt thuộc các đường thẳng BC, CA, AB. Khi đó ba đường thẳng AA’, BB’, CC’ đồng quy khi và chỉ khi A B B C C A A C B A C B.
II. Một số ví dụ minh họa

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *