Chuyên đề phương trình bậc hai một ẩn – Nguyễn Tiến

Tài liệu gồm 103 trang hướng dẫn giải và biện luận phương trình bậc hai một ẩn, các dạng toán liên quan đến phương trình bậc hai và các dạng phương trình quy về phương trình bậc hai. Tài liệu được biên soạn bởi tác giả Nguyễn Tiến.

Bạn đang đọc: Chuyên đề phương trình bậc hai một ẩn – Nguyễn Tiến

Nội dung tài liệu:
I. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
1. Nhắc lại về giải phương trình bậc nhất một ẩn.
2. Kiến thức chung về phương trình bậc hai một ẩn.
3. Các dạng bài tập:
a. Phương trình không chứa tham số.

+ Xác định phương trình bậc hai và các hệ số của phương trình bậc hai.
+ Giải phương trình bậc hai dạng tổng quát ax^2 + bx + c = 0.
+ Giải phương trình bậc hai khuyết b hoặc c.
+ Cho phương trình bậc hai, tính giá trị của biểu thức chứa nghiệm.
+ Lập phương trình bậc hai khi biết tổng và tích của hai nghiệm.
b. Phương trình chứa tham số – giải phương trình bậc hai và bài toán phụ.
+ Giải và biện luận phương trình.
+ Tìm giá trị tham số của phương trình để phương trình có nghiệm thoả mãn một điều kiện cho trước.
+ Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị tham số của phương trình.
+ Lập hệ thức liên hệ giữa x1, x2 sao cho x1, x2 độc lập đối giá trị tham số của phương trình.
+ Tìm giá trị tham số của phương trình thoả mãn biểu thức chứa nghiệm.
+ Tìm điều kiện của giá trị tham số của phương trình để biểu thức liên hệ giữa các nghiệm lớn nhất, nhỏ nhất.
+ Tìm công thức tổng quát của phương trình khi biết một nghiệm, tính nghiệm còn lại.

c. Phương trình bậc cao – phương trình quy về phương trình bậc hai.
+ Phương trình trùng phương.
+ Phương trình chứa ẩn ở mẫu thức.
+ Phương trình tích.
d. Giải phương trình bậc cao bằng phương pháp đặt ẩn phụ.
+ Dạng 1: Phương trình đối xứng (phương trình hồi quy).
+ Dạng 2: Phương trình: (x + a)(x + b)(x + c)(x + d) = e, trong đó a + b = c + d.
+ Dạng 3: Phương trình (x + a)(x + b)(x + c)(x + d) = ex^2, trong đó ab = cd.
+ Dạng 4: Phương trình (x + a)^4 + (x + b)^4 = c.
+ Dạng 5: Phương trình chứa mẫu số là phương trình bậc hai.
II. PHƯƠNG TRÌNH BẬC CAO – PHỨC TẠP
+ Phương trình có ẩn ở trong dấu giá trị tuyệt đối.
+ Phương trình có chứa căn thức.
+ Phương pháp đặt ẩn số phụ.
+ Áp dụng bất đẳng thức.
+ Phương trình chứa nhiều căn bậc lẻ.
+ Phương trình chứa cả căn bậc chẵn và căn bậc lẻ.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *