TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông.
Bạn đang đọc: Đề chọn đội tuyển HSG môn Toán năm 2022 – 2023 sở GD&ĐT Đắk Nông
Trích dẫn Đề chọn đội tuyển HSG môn Toán năm 2022 – 2023 sở GD&ĐT Đắk Nông:
+ Cho phương trình ax3 + 27×2 + 12x + 2022 = 0 có 3 nghiệm thực phân biệt. Hỏi phương trình sau có bao nhiêu nghiệm thực: 4 (ax3 + 27×2 + 12x + 2022)(3ax + 27) = (3ax2 + 54x + 12)2 với a khác 0.
+ Cho hai đường tròn (O1) và (O2) tiếp xúc trong tại M (đường tròn (O2) nằm trong). Hai điểm P và Q thuộc đường tròn (O2), qua P kẻ tiếp tuyến với (O2) cắt (O1) tại B và D, qua Q kẻ tiếp tuyến với (O2) cắt (O1) tại A và C. Chứng minh rằng tâm đường tròn nội tiếp các tam giác ACD, BCD nằm trên PQ.
+ Cho tam giác ABC, trên trung tuyến AD lấy điểm I cố định. Đường thẳng d đi qua I lần lượt cắt cạnh AB, AC tại M, N. Tìm vị trí của đường thẳng d để diện tích tam giác AMN đạt giá trị nhỏ nhất.