Ngày … tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn đội dự tuyển thi học sinh giỏi Quốc gia năm 2021 môn Toán.
Bạn đang đọc: Đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai
Đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Trích dẫn đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai:
+ Cho tam giác ABC cân tại A, lấy điểm D thuộc cạnh AB khác A và B, gọi (O) là đường tròn ngoại tiếp tam giác BCD, tiếp tuyến của đường tròn (O) tại D cắt đường thẳng AC tại điểm E, vẽ tiếp tuyến EF của đường tròn (O) tại tiếp điểm F khác D. Gọi I là giao điểm của hai đường thẳng BF và CD, gọi K là giao điểm của hai đường thẳng AI và BC. Chứng minh BK = 2CK.
+ Một tổ gồm có 5 học sinh được phân công trực nhật 6 ngày trong tuần từ thứ hai đến thứ bảy thỏa mãn các điều kiện sau: Mỗi ngày đều có từ 1 đến nhiều nhất là 2 học sinh trực và trong cả tuần mỗi học sinh trực đúng 2 lần, mỗi lần trực 1 ngày. Tính số các cách phân công trực nhật của tổ thỏa mãn các điều kiện đã cho.
+ Cho dãy số (un) xác định bởi un+1 = un + 1/2021n với mọi n thuộc N*. Chứng minh rằng tồn tại số nguyên dương n sao cho un > 0.