Đề chọn đội tuyển Toán năm 2020 – 2021 trường THPT chuyên Trần Phú – Hải Phòng

Thứ Bảy ngày 12 tháng 09 năm 2020, trường THPT chuyên Trần Phú, thành phố Hải Phòng tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp trường môn Toán năm học 2020 – 2021.

Bạn đang đọc: Đề chọn đội tuyển Toán năm 2020 – 2021 trường THPT chuyên Trần Phú – Hải Phòng

Đề chọn đội tuyển Toán năm 2020 – 2021 trường THPT chuyên Trần Phú – Hải Phòng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.

Trích dẫn đề chọn đội tuyển Toán năm 2020 – 2021 trường THPT chuyên Trần Phú – Hải Phòng:
+ Cho tam giác ABC nội tiếp đường tròn (O), D là điểm chính giữa cung BC không chứa A, E là điểm đối xứng với B qua AD, BE cắt (O) tại F khác B. Điểm P di chuyển trên cạnh AC. BP cắt (O) tại Q khác B. Đường thẳng qua C song song với AQ cắt FD tại điểm G.
a) Gọi H là giao điểm của EG và BC. Chứng minh rằng B, P, E, H cùng thuộc một đường tròn, gọi đường tròn này là (K).
b) (K) cắt (O) tại L khác B. Chứng minh rằng LP luôn đi qua một điểm S cố định khi P di chuyển.
c) Gọi T là trung điểm PE. Chứng minh rằng đường thẳng qua T song song với LS đi qua trung điểm của AF.
+ Xác định tất cả các đa thức hệ số nguyên nhận 1 + √2021 làm nghiệm.
+ Có bao nhiêu số nguyên dương n không vượt quá 10^2020 thỏa mãn 2^n ≡ 2021 (mod 5^2020)?

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *