Đề chọn học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Bình Định

Ngày 22 tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020.

Bạn đang đọc: Đề chọn học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Bình Định

Đề chọn học sinh giỏi tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bình Định gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút.

Trích dẫn đề chọn học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Bình Định:
+ Cho tam giác ABC (AC
+ Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc. Gọi R và r lần lượt là bán kính mặt cầu ngoại tiếp và bán kính mặt cầu nội tiếp hình chóp; V là thể tích khối chóp và h là đường cao của hình chóp từ đỉnh S. Tìm giá trị lớn nhất của biểu thức V(h – r)/R^2rh.

+ Trên bảng kẻ ô vuông 2 × n ghi các số dương sao cho tổng của hai số trong mỗi cột bằng 1. Chứng minh rằng có thể bỏ đi một số trong mỗi cột để trên mỗi hàng các số còn lại có tổng không vượt quá (n + 1)/4.
+ Tìm tất cả các số nguyên tố p có dạng a^2 + b^2 + c^2 với a, b, c là các số tự nhiên sao cho a^4 + b^4 + c^4 chia hết cho p.
+ Cho hai đa thức P(x) và Q(x) = aP(x) + bP'(x) với a, b là các số thực và a ≠ 0. Chứng minh rằng nếu đa thức Q(x) vô nghiệm thì đa thức P(x) cũng vô nghiệm.

File WORD (dành cho quý thầy, cô): TẢI XUỐNG

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *