TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 27 tháng 09 năm 2022.
Bạn đang đọc: Đề chọn học sinh giỏi Toán 12 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu
Trích dẫn Đề chọn học sinh giỏi Toán 12 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu:
+ Cho dãy số (un) xác định bởi u1 = 1; un+1 = un + 2/un + n/un^4 với mọi n nguyên dương. Chứng minh dãy số (yn) với yn = un/n (n nguyên dương) có giới hạn hữu hạn. Tính giới hạn đó.
+ Cho tam giác ABC không cân nội tiếp đường tròn (O). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc các cạnh BC, CA, AB lần lượt tại D, E, F. H là hình chiếu vuông góc của D lên EF. Tia IH cắt đường tròn (O) tại K. Đường tròn ngoại tiếp hai tam giác KBF, KCE cắt nhau tại T khác K. Gọi M là trung điểm TD. Qua M kẻ tiếp tuyến MN của đường tròn (I) (N là tiếp điểm khác D). a) Chứng minh T, E, F thẳng hàng và đường tròn ngoại tiếp tam giác NBC tiếp xúc (I). b) AN cắt đường tròn ngoại tiếp tam giác NBC ở S khác N. Hai tiếp tuyến của đường tròn (I) kẻ từ S cắt đường tròn ngoại tiếp tam giác NBC lần lượt tại P, Q. Chứng minh hai đường thẳng PQ và BC song song với nhau.
+ Hình vuông ABCD có độ dài cạnh là 2023 được chia thành 2023^2 ô vuông đơn vị. Ta kí hiệu (m;n) là ô ở hàng thứ m và cột thứ n. Người ta tô tất cả các ô vuông đơn vị bởi hai màu xanh, đỏ sao cho hai ô khác nhau đối xứng qua đường thẳng AC thì được tô khác màu. Gọi S là tập hợp các bộ ba số m, n, p đôi một khác nhau (không phân biệt thứ tự); m, n, p thuộc {1; 2; 3; …; 2023} sao cho các ô (m;n), (n;p) và (p;m) có cùng màu. Kí hiệu |S| là số phần tử tập hợp S. a) Tồn tại hay không cách tô màu sao cho |S| = 0? b) Chứng minh rằng: |S| =