Đề chọn HSG Toán 12 cấp trường năm 2019 – 2020 THPT chuyên Nguyễn Trãi – Hải Dương

Ngày 07 tháng 09 năm 2019, trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán 12 cấp trường năm học 2019 – 2020.

Bạn đang đọc: Đề chọn HSG Toán 12 cấp trường năm 2019 – 2020 THPT chuyên Nguyễn Trãi – Hải Dương

Đề chọn HSG Toán 12 cấp trường năm 2019 – 2020 THPT chuyên Nguyễn Trãi – Hải Dương gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 180 phút, đề thi có đáp án và lời giải chi tiết.

Trích dẫn đề chọn HSG Toán 12 cấp trường năm 2019 – 2020 THPT chuyên Nguyễn Trãi – Hải Dương:
+ Điền vào mỗi ô của bảng vuông 7 x 7 các số tự nhiên từ 1 đến 49 như hình vẽ. Mỗi lần, được phép chọn 1 ô của bảng và đồng thời tăng số trong ô đó thêm 1 rồi giảm mỗi số trong hai ô nào đó kề với nó đi 1, hoặc giảm số trong ô đó đi 1 và tăng mỗi số trong hai ô kề với nó thêm 1 (hai ô kề nhau là hai ô chung cạnh). Hỏi có thể đưa tất cả các số trong bảng về bằng nhau sau một số hữu hạn bước được hay không?

+ Cho tam giác ABC nội tiếp đường tròn (O). Một đường tròn (K) qua B và C cắt các đoạn thẳng CA và AB lần lượt tại E và F. Gọi BE cắt CF tại H. M là trung điểm BC và tiếp tuyến tại B và C của đường tròn ngoại tiếp tam giác BHC cắt nhau tại I. Gọi S là hình chiếu của A trên IH và D là giao của IH với BC. Chứng minh rằng đường tròn ngoại tiếp tam giác SMD tiếp xúc với đường tròn (O).
+ Cho dãy số (an) thỏa mãn đồng thời hai điều kiện 3a_n+1≥ a_n và 6a_n+1 + a_n-1 ≤ 5a_n với mọi n ≥ 2 và n thuộc N. Chứng minh rằng dãy (an) có giới hạn hữu hạn và tìm giới hạn đó.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *