TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2023.
Bạn đang đọc: Đề học sinh giỏi Toán 11 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Bình Định
Trích dẫn Đề học sinh giỏi Toán 11 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Bình Định:
+ Cho dãy số (un) xác định bởi: u1 = 1; u2 = 4; un+2 = 7un+1 – un – 2 với mọi n thuộc N*. Chứng minh mọi số hạng un của dãy đều là số chính phương. Gọi S là tập hợp tất cả các số tự nhiên có tám chữ số đôi một khác nhau. Chọn ngẫu nhiên một số trong tập S. Tính xác suất để số được chọn chia hết cho 45.
+ Cho tam giác ABC nội tiếp trong đường tròn tâm O. Một đường tròn tâm J tiếp xúc với hai cạnh CA, CB lần lượt tại D, E và tiếp xúc trong với đường tròn (O) tại F. Gọi P, Q lần lượt là giao điểm thứ hai của FD, FE với đường tròn (O). Chứng minh rằng các đường thẳng AQ, BP, DE đồng quy tại tâm đường tròn nội tiếp tam giác ABC.
+ Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC và M là một điểm bất kỳ thuộc miền trong tam giác ABC, M khác G và MG không song song với cạnh nào của tam giác ABC. Đường thẳng qua M song song DG cắt các mặt phẳng (DBC), (DCA), (DAB) lần lượt ở A’, B’, C’. Chứng minh rằng: DA’ + DB’ + DC’ > 3GM.