Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Như Thanh – Thanh Hoá

Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Như Thanh – Thanh Hoá

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi văn hóa môn Toán 8 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Như Thanh, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 12 tháng 01 năm 2023.

Bạn đang đọc: Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Như Thanh – Thanh Hoá

Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Như Thanh – Thanh Hoá:
+ Cho biểu thức A. Rút gọn A và tìm số nguyên x để A chia hết cho 2. Cho các số thực a, b, c đôi một khác nhau thỏa mãn: a3 + b3 + c3 = 3abc và abc khác 0. Tính giá trị của biểu thức P.
+ Tìm cặp số nguyên (x;y) thỏa mãn phương trình: x3 + 3x = x2y + 2y + 5. Cho x; y là các số nguyên khác 0; 1; -1 và x + y chia hết cho xy. Chứng minh rằng x3 + 1 không chia hết cho y.
+ Cho tứ giác ABCD. Gọi E, I lần lượt là trung điểm của AC và BC; M là điểm đối xứng với I qua E. 1. Chứng minh tứ giác ABIM là hình bình hành. 2. Gọi N, F lần lượt là trung điểm của AD và BD; K là điểm đối xứng với I qua F. Chứng minh ba đường thẳng IN; MF; KE đồng quy. 3. Gọi O là giao hai đường chéo AC và BD. Kí hiệu: S; S1; S2 lần lượt là diện tích tứ giác ABCD, tam giác AOB và tam giác COD. Biết S1 = a2; S2 = b2 với a, b là các số dương cho trước. Tìm điều kiện của tứ giác ABCD để S = (a + b)2.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *