Đề HSG huyện Toán 8 vòng 2 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc

Đề HSG huyện Toán 8 vòng 2 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 vòng 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc; đề thi hình thức tự luận với 10 bài toán, thời gian làm bài 150 phút.

Bạn đang đọc: Đề HSG huyện Toán 8 vòng 2 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc

Trích dẫn Đề HSG huyện Toán 8 vòng 2 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc:
+ Biết rằng đa thức f(x) khi chia cho x − 2 thì được số dư là 6067; khi chia cho x + 3 thì được số dư là -4043. Tìm đa thức dư khi chia đa thức f(x) cho đa thức x² + x – 6.
+ Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC, lấy điểm M sao cho BM = 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI.
+ Cho hình vuông ABCD có cạnh bằng a. Trên cạnh AD lấy điểm M sao cho AM = 3MD. Kẻ tia Bx cắt cạnh CD tại I sao cho ABM = MBI. Kẻ tia phân giác của CBI, tia này cắt cạnh CD tại N. a) Chứng minh rằng: MN = AM + NC. b) Tính diện tích tam giác BMN theo a.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *