Đề kiểm tra định kì lần 2 Toán 12 năm 2021 – 2022 trường THPT chuyên Bắc Ninh mã đề 132 gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kỳ thi được diễn ra trong giai đoạn giữa học kì 1 năm học 2021 – 2022, đề thi có đáp án chi tiết mã đề 132 209 357 485 570 628 743 896.
Bạn đang đọc: Đề kiểm tra định kì lần 2 Toán 12 năm 2021 – 2022 trường THPT chuyên Bắc Ninh
Trích dẫn đề kiểm tra định kì lần 2 Toán 12 năm 2021 – 2022 trường THPT chuyên Bắc Ninh:
+ Một người gọi điện thoại nhưng quên mất chữ số cuối. Tính xác suất để người đó gọi đúng số điện thoại mà không phải thử quá hai lần (giả sử người này không gọi thử 2 lần với cùng một số điện thoại).
+ Trong kì thi THPT Quốc Gia năm 2016 có môn thi bắt buộc là môn Tiếng Anh. Môn thi này thi dưới hình thức trắc nghiệm với bốn phương án trả lời A, B, C, D. Mỗi câu trả lời đúng được cộng 0,2 điểm; mỗi câu trả lời sai bị trừ 0,1 điểm. Bạn Hoa vì học rất kém môn Tiếng Anh nên chọn ngẫu nhiên cả 50 câu trả lời. Tính xác suất để bạn Hoa đạt được 4 điểm môn Tiếng Anh trong kì thi trên.
+ Mệnh đề nào sau đây là đúng? A. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại. B. Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau. C. Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau. D. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia.
+ Cho hàm số y f x có bảng biến thiên như hình dưới đây, trong đó m. Chọn khẳng định đúng: A. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 1 đường tiệm cận ngang với mọi m. B. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 2 đường tiệm cận ngang với mọi m 2. C. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 2 đường tiệm cận ngang với mọi m. D. Đồ thị hàm số có đúng 1 đường tiệm cận đứng và 2 đường tiệm cận ngang với mọi m.
+ Có bao nhiêu dãy số là cấp số cộng trong năm dãy số cho sau đây. Dãy n u xác định bởi 2 n u n với mọi số nguyên dương n Dãy n u xác định bởi (1). n n u n với mọi số nguyên dương n Dãy n u xác định bởi 2 3 5 n u n với mọi số nguyên dương n Dãy n u xác định bởi 1 0 1 1 2 n n n u u u a u b u trong đó hằng số a,b khác nhau cho trước, với mọi số nguyên dương n Dãy n u xác định bởi 0 u 2022 1 u 2021 1 1 2 n n n u u u với mọi số nguyên dương n.