Đề kiểm tra học kỳ 2 Toán 10 năm 2018 – 2019 trường Nguyễn Trãi – Hà Nội

TOANMATH.com giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề kiểm tra học kỳ 2 Toán 10 năm học 2018 – 2019 trường THPT Nguyễn Trãi – Ba Đình – Hà Nội, đề thi có mã đề 001 được biên soạn theo dạng kết hợp giữa trắc nghiệm khách quan và tự luận theo tỉ lệ điểm 30 : 70, phần trắc nghiệm gồm 15 câu, học sinh làm bài trong 30 phút, phần tự luận gồm 3 câu, học sinh làm bài trong 60 phút, đề thi có đáp án và lời giải chi tiết.

Bạn đang đọc: Đề kiểm tra học kỳ 2 Toán 10 năm 2018 – 2019 trường Nguyễn Trãi – Hà Nội

Trích dẫn đề kiểm tra học kỳ 2 Toán 10 năm 2018 – 2019 trường Nguyễn Trãi – Hà Nội:
+ Từ điểm A(6;2) ta kẻ hai tiếp tuyến với đường tròn (C): x^2 + y^2 = 4, tiếp xúc với (C) lần lượt tại P và Q. Tâm I của đường tròn ngoại tiếp tam giác APQ có tọa độ là?

+ Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm M(1;3), N(-1;2) và đường thẳng d: 3x – 4y – 6 = 0.
a) Viết phương trình đường thẳng đi qua hai điểm M, N.
b) Viết phương trình đường tròn tâm M và tiếp xúc với đường thẳng d.
c) Cho đường tròn (C) có phương trình: x^2 + y^2 – 6x – 4y – 3 = 0. Viết phương trình đường thẳng d’ qua M cắt đường tròn (C) tại hai điểm A, B sao cho AB có độ dài nhỏ nhất.
+ Cho tam giác ABC có các góc A, B, C thỏa mãn hệ thức: sinA + sinB + sinC = sin2A + sin2B + sin2C. Chứng minh tam giác ABC là tam giác đều.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *