Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Nghệ An

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Nghệ An gồm đề bảng A và đề bảng B, đề thi có đáp án và lời giải chi tiết (lời giải được thực hiện bởi các thành viên Tạp Chí Và Tư Liệu Toán Học).

Bạn đang đọc: Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Nghệ An

Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Nghệ An:
+ Cho tam giác nhọn ABC có D, E, F lần luợt là chân các đường cao kẻ từ ba đỉnh A, B, C của tam giác. Gọi H là trực tâm tam giác ABC và K là trung điềm của HC.
a) Chứng minh rằng 4 điểm E, K, D, F cùng thuộc một dường tròn.
b) Đường thẳng đi qua K song song với BC cắt DF tại M. Trên tia DE lấy điểm P sao cho MAP = BAC. Chứng minh rằng SAMF/SAMP = MF/MP (trong đó SAMF, SAMP lần lượt là diện tích các tam giác AMF và AMP).
+ Cho các số thực dương x, y, z thỏa mãn điều kiện x2 + y2 + z = 3xy. Chứng minh rằng.
+ Cho đa giác đều có 2021 đỉnh, sao cho mỗi đỉnh của đa giác đó chỉ được tô bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại 3 đỉnh của đa giác đã cho là các đỉnh của một tam giác cân mà các đỉnh đó được tô cùng một màu.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *