Đề thi học sinh giỏi Toán 9 năm 2018 – 2019 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết.
Bạn đang đọc: Đề thi học sinh giỏi Toán 9 năm 2018 – 2019 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc
Trích dẫn đề thi học sinh giỏi Toán 9 năm 2018 – 2019 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc:
+ Cho p là một số nguyên tố thỏa mãn 3 3 pa b (với a b là hai số nguyên dương phân biệt). Chứng minh rằng nếu lấy 4 p chia cho 3 và loại bỏ phần dư thì nhận được một số là bình phương của một số nguyên lẻ.
+ Cho hình thoi ABCD có góc A nhọn, gọi O là giao điểm của hai đường chéo. Kẻ OH vuông góc với đường thẳng AB tại H. Trên tia đối của tia BC lấy điểm M (điểm M không trùng với điểm B), trên tia đối của tia DC lấy điểm N sao cho đường thẳng HM song song với đường thẳng AN. Chứng minh rằng MOB OND.
+ Từ 625 số tự nhiên liên tiếp 1, 2, 3 … 625, chọn ra 311 số sao cho không có hai số nào có tổng bằng 625. Chứng minh rằng trong 311 số được chọn, bao giờ cũng có ít nhất một số chính phương.
File WORD (dành cho quý thầy, cô): TẢI XUỐNG