Đề thi Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Thường Tín – Hà Nội

Đề thi Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Thường Tín – Hà Nội

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thường Tín, thành phố Hà Nội.

Bạn đang đọc: Đề thi Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Thường Tín – Hà Nội

Trích dẫn Đề thi Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Thường Tín – Hà Nội:
+ Một người đi xe đạp từ A đến B đúng giờ dự định. Sau khi đi 10km đầu trong 12 phút, anh ta tính ra rằng nếu tiếp tục đi với vận tốc như vậy thì sẽ đến sớm hơn dự định là 24 phút. Còn nếu giảm vận tốc đi 5km/h thì anh ta vẫn đến B sớm hơn 10 phút so với giờ dự định. Hãy tính khoảng cách AB.
+ Cho phương trình a) Giải phương trình (1) với m = 4 b) Tìm điều kiện của m để phương trình (1) có nghiệm duy nhất là số âm.
+ Cho hình vuông ABCD cạnh a và điểm N trên cạnh AB. Cho biết tia CN cắt tia DA tại E, tia CX vuông góc với tia CE cắt tia AB tại F. Gọi M là trung điểm của đoạn thẳng EF. a) Chứng minh CE = CF b) Chứng minh B, D, M thẳng hàng c) Chứng minh EAC đồng dạng với MBC d) Xác định vị trí điểm N trên cạnh AB sao cho tứ giác ACFE có diện tích gấp 3 lần diện tích hình vuông ABCD.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *