THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Cao Bằng; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề).
Bạn đang đọc: Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Cao Bằng
Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Cao Bằng:
+ Cho Parabol (P): y = mx2 và đường thẳng (d): y = 2x – m2 (m là tham số m > 0). Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A và B. Chứng minh rằng khi đó hai điểm A, B nằm bên phải trục tung.
+ Cho nửa đường tròn (O;R) đường kính AB. Đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M (M khác A và B). Tia AM cắt đường thẳng d tại C. Gọi I là trung điểm của AM, tia IO cắt đường thẳng d tại N. a) Chứng minh rằng tứ giác OBCI nội tiếp. b) Chứng minh AI.IC = IO.IN. c) Gọi E là hình chiếu của O trên AN. Chứng minh rằng? d) Xác định vị trí của điểm M để 2AM + AC đạt giá trị nhỏ nhất.
+ Cho hệ phương trình (m là tham số). Tìm các giá trị nguyên của m để hệ phương trình đã cho có nghiệm duy nhất (x;y) sao cho biểu thức A = 3x – y nhận giá trị nguyên.