THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tổng hợp đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang từ năm 2011 đến năm 2020, nhằm giúp các em ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán sắp tới.
Bạn đang đọc: Đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang
Trích dẫn đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang:
+ Cho đường tròn (O;R) đường kính AB = 2R, điểm M thuộc (O) (M khác A và B). Trên tia AB lấy điểm C sao cho AC = 3R. Đường thẳng (d) vuông góc với AB tại C cắt AM tại E.
1. Chứng minh tứ giác BCEM nội tiếp. 2. Tính AM.AE theo R.
3. Lấy N thuộc (O) (N khác A, B, M), đường thẳng AN cắt CE tại F. Chứng minh MNEF nội tiếp.
+ (Giải bài toán sau bằng cách lập phương trình bậc hai) Quãng đường AB dài 90 km, có hai ôtô khởi hành cùng một lúc. Ôtô thứ nhất đi từ A đến B, ô-tô thứ hai đi từ B đến A. Sau 1 giờ hai xe gặp nhau và tiếp tục đi. Xe ôtô thứ hai tới A trước xe thứ nhất tới B là 27 phút. Tính vận tốc mỗi xe.
+ Trong mặt phẳng Oxy, cho parabol (P): y = 1/4×2 và đường thẳng (d): y = mx − m − 2.
1. Với m = 1, vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ.
2. Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt A, B khi m thay đổi.
3. Xác định m để trung điểm của đoạn thẳng AB có hoành độ bằng 1.