Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc ba) – Lương Tuấn Đức

Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc ba) – Lương Tuấn Đức

Tài liệu gồm 121 trang hướng dẫn sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc ba), tài liệu được biên soạn bởi thầy Lương Tuấn Đức, phù hợp với các bạn học sinh lớp 9 THCS ôn thi vào lớp 10 THPT đại trà, lớp 10 hệ THPT chuyên, các bạn chuẩn bị bước vào các kỳ thi học sinh giỏi Toán các cấp và dự thi kỳ thi tuyển sinh THPT – Đại học – Cao đẳng môn Toán trên toàn quốc, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn trẻ yêu Toán khác.

Bạn đang đọc: Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc ba) – Lương Tuấn Đức

Nội dung mang tính kế thừa và phát huy với phương châm chủ đạo là dùng hai ẩn phụ đưa phương trình cho trước về hệ phương trình, bao gồm hệ cơ bản, hệ đối xứng và gần đối xứng (tiếp theo), xoay quanh các bài toán với căn bậc ba. Đây vẫn là một trong những phương án hữu tỷ hóa phương trình chứa căn, giảm thiểu đại bộ phận sự cồng kềnh và sai sót trong tính toán. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh.

Kiến thức và kỹ năng cần chuẩn bị khi tìm hiểu tài liệu:
1. Nắm vững các phép biến đổi đại số cơ bản (nhân, chia đa thức, phân tích đa thức thành nhân tử, biến đổi phân thức đại số và căn thức).
2. Kỹ năng biến đổi tương đương, nâng lũy thừa, phân tích hằng đẳng thức, thêm bớt.
3. Nắm vững lý thuyết bất phương trình, dấu nhị thức bậc nhất, dấu tam thức bậc hai.
4. Nắm vững kiến thức về đa thức đồng bậc, các thao tác cơ bản với phương trình một ẩn phụ.
5. Bước đầu thực hành giải và biện luận các bài toán phương trình bậc hai, bậc cao với tham số, giải hệ phương trình bằng phương pháp thế, phương pháp cộng đại số, giải hệ phương trình đối xứng loại 1, loại 2; hệ phương trình đồng bậc; hệ phương trình đa ẩn.
6. Sử dụng thành thạo các ký hiệu logic trong phạm vi toán phổ thông.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *