Nhằm đáp ứng nhu cầu tham khảo và rèn luyện các đề tuyển sinh vào lớp 10 chuyên môn Toán, THCS.TOANMATH.com giới thiệu đến các em học sinh tài liệu tuyển chọn 50 đề thi tuyển sinh vào lớp 10 chuyên môn Toán. Tài liệu gồm 254 trang với các đề thi được biên soạn theo hình thức tự luận, thời gian làm bài 120 phút, tất cả các đề đều có lời giải chi tiết.
Bạn đang đọc: Tuyển chọn 50 đề thi tuyển sinh vào lớp 10 chuyên môn Toán
Trích dẫn tài liệu tuyển chọn 50 đề thi tuyển sinh vào lớp 10 chuyên môn Toán:
+ Cho tam giác ABC nhọn nội tiếp đường tròn (O) có góc BAC = 45 độ, BC = a. Gọi E, F lần lượt là chân đường vuông góc hạ từ B xuống AC và từ C xuống AB. Gọi I là điểm đối xứng của O qua EF.
a) Chứng minh rằng các tứ giác BFOC và AEIF nội tiếp được đường tròn.
b) Tính EF theo a.
+ Cho phương trình (x – 2)(x^2 – x) + (4m + 1)x – 8m – 2 = 0 (x là ẩn số). Tìm m để phương trình có ba nghiệm phân biệt x1; x2; x3 thỏa mãn điều kiện x1^2 + x2^2 + x3^2 = 11.
+ Cho phương trình x^2 – 2(m + 1)x + m^2 = 0 (1). Tìm m để phương trình có 2 nghiệm x1; x2 thỏa mãn (x1 – m)^2 + x2 = m + 2.