Bài toán thực tế và bài toán tối ưu min – max – Lê Viết Nhơn

Bài toán thực tế và bài toán tối ưu min – max – Lê Viết Nhơn

Tài liệu gồm 23 trang tuyển chọn các bài toán thực tế và bài toán tối ưu min – max do thầy Lê Viết Nhơn sưu tầm và biên soạn, với nội dung gồm các phần:

Bạn đang đọc: Bài toán thực tế và bài toán tối ưu min – max – Lê Viết Nhơn

+ Phần 1. Bài toán thực tế tối ưu+ Phần 2. Các bài toán thực tế liên quan đến tích phân
+ Phần 3. Bài toán thực tế liên quan đến mũ và lôgarit
+ Phần 4. Bài tập rèn luyện trích từ đề thi thử các trường THPT

Trích dẫn tài liệu:
+ Một tấm kẽm hình vuông ABCD có cạnh bằng 30 cm. Người ta gập tấm kẽm theo hai cạnh EF và GH cho đến khi AD và BC trùng nhau như hình vẽ dưới đây để
được một hình lăng trụ khuyết hai đáy.
+ Cho một tam giác đều ABC cạnh a. Người ta dựng một hình chữ nhật MNPQ có cạnh MN nằm trên cạnh BC, hai đỉnh P và Q theo thứ tự nằm trên hai cạnh AC
và AB của tam giác. Xác định vị trí của điểm M sao cho hình chữ nhật có diện tích lớn nhất và tìm giá trị lớn nhất đó.
+ Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng
P(n) = 480 – 20n gam. Hỏi phải thả bao nhiêu cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất?

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *