TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng cuối học kì 1 môn Toán 10 năm học 2022 – 2023 trường THPT Nguyễn Hữu Huân, thành phố Hồ Chí Minh (dạng đề 100% tự luận).
Bạn đang đọc: Đề cuối kì 1 Toán 10 năm 2022 – 2023 trường THPT Nguyễn Hữu Huân – TP HCM
Trích dẫn Đề cuối kì 1 Toán 10 năm 2022 – 2023 trường THPT Nguyễn Hữu Huân – TP HCM:
+ Cho hàm số bậc hai y = 2×2 + bx + c có đồ thị là parabol (P). Tìm b và c biết rằng (P) có hoành độ đỉnh bằng −2 và (P) đi qua điểm N(1;−2).
+ Cho tam giác ABC, điểm M trên cạnh BC sao cho BM = 1/3.BC, điểm E trên cạnh AC sao cho AE = 3/4.AC. a) Chứng minh rằng: ME = -2/3.AB + 5/12.AC. b) Gọi F là điểm thỏa AB = 5BF. Chứng minh rằng: ba điểm F, M, E thẳng hàng.
+ Vào ngày 23/11/2022, trận đấu giải chung kết World Cup 2022 giữa Pháp và Úc đã diễn ra tại sân vận động Al Janoub (Qatar) với sức chứa 40 000 người. Gần đến ngày tổ chức trận đấu, ban tổ chức chỉ còn phát hành hai loại vé là 400 USD và 200 USD (USD: Đô-la Mỹ, một loại đơn vị tiền tệ). Do điều kiện sân đấu nên số lượng vé có giá 400 USD không lớn hơn số lượng vé có giá 200 USD. Để an toàn phòng dịch, liên đoàn bóng đá yêu cầu tổng số lượng vé hai loại 400 USD và 200 USD phát hành không được quá 30% sức chứa của sân. Biết rằng số tiền thu được qua việc bán hai loại vé này không được ít hơn 3 triệu USD. Gọi x, y lần lượt là số vé giá 400 USD và 200 USD được bán ra. a) Hãy viết hệ bất phương trình bậc nhất hai ẩn x, y để biểu diễn số vé mỗi loại được bán ra đảm bảo mục đích của ban tổ chức. b) Biết rằng ban tổ chức sẽ lãi được 50 USD khi bán được một vé giá 400 USD và lãi được 30 USD khi bán được một vé giá 200 USD. Hỏi ban tổ chức cần bán bao nhiêu vé mỗi loại để thu được lợi nhuận nhiều nhất?